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I Introduction

Macroeconomic variables are weighted averages of a large number of components, thus,

the usual focus on the aggregate alone implies neglecting a large amount of information. The

objective of this paper is to develop a procedure to model and forecast all of the components

of a macro or business variable at the maximum level of disaggregation. Our strategy consists

of identifying and estimating relevant relationships between the components (disaggregates)

and then exploiting those relationships in single-equation models for the disaggregates. This

strategy can be useful in achieving two purposes: (i) providing relatively precise models and

accurate forecasts of the components, our major interest; and (ii) generating an improved

indirect forecast for the aggregate, in the sense that it is not significantly worse than direct

forecasts. Attaining purpose ii, would be an indirect validation of the strategy for achieving

purpose i.

When working with an aggregate composed of a large set of disaggregates, one of the

main challenges in econometric modeling is how to deal with the trade-off between infor-

mational losses (when components are not considered) and estimation uncertainty (due to

the increased number of parameters to be estimated when disaggregates are used). The

informational losses would increase with the differences in the statistical distributions of

the components, and the estimation uncertainty could be mitigated by using appropriate

restrictions for the data.

One possibility for dealing with the informational losses vs. the estimation uncertainty

trade-off is the consideration of common features, as proposed by Espasa and Mayo-Burgos

(2013). These authors argue that when analyzing the components of a macro variable, it is

usual to observe that while some components share features such as trends or cycles, others

do not, probably because they incorporate changes in technology or in the preferences

of economic agents in different ways. Thus, as Espasa and Mayo-Burgos argue, a valid

hypothesis may be that specific subsets of components share common features, while others

do not.

To exploit the restrictions derived from the existence of those subsets, Espasa and Mayo-

Burgos suggest restrict the analysis to discover subsets of components such that all the

2



elements in a subset share a unique common feature (trends and cycles — see Engle and

Kozicki, 1993 for a definition of common features), and then including the restrictions im-

plied by those commonalities in single-equation models for the components. In this paper

we focus just on common trends.

Castle and Hendry (2010) also highlight — as Mayo and Espasa (2009) propose1 — the

importance of including long and short-run common features restrictions in the individual

models for the components.

The problem of how to discover unknown restrictions in multivariate models is also present

in the Dynamic Factors Models (DFM) literature. Several authors have shown that if the

data contain non-pervasive factors (factors that are common only to a reduced subset of

series), results are more accurate when factors are extracted from data that are informative

about them (see, e.g., Boivin and Ng, 2006 and Beck et al., 2015). Some proposals to deal

with non-pervasive factors can be found in Karadimitropoulou and León-Ledesma (2013),

Moench et al. (2013), Breitung and Eickmeier (2015), Bailey, Kapetanios, and Pesaran

(2015), BKP hereafter, Bailey, Holly, and Pesaran (2015), BHP hereafter, and Ando and

Bai (2015).

The closer approaches to ours are those of Ando and Bai (2015), BKP, and BHP. In all

these cases, the authors restrict their attention to stationary series, assume that the cross-

sectional dimension goes to infinity, and require the usual restrictions of DFM on the serial

and cross-correlation of idiosyncratic components (see e.g., assumption C in Bai and Ng,

2002). All these assumptions do not fit our framework of interest.

We face the problem of identifying possibly small subsets of components that share just

one common trend. Apart from dealing with I(1) variables, our strategy has three additional

advantages which derive from the fact that it does not rely on any type of cross-sectional

averaging method. First, we do not need the trends to be pervasive. Second, the cross-

sectional dimension of the subsets that have the non-pervasive trends does not need to go to

infinity. Our theory works both, with fixed N and T →∞, and with [T,N ]→∞. Third, as

we do not need idiosyncrasies to average out, we do not need to impose special restrictions

on idiosyncratic serial or cross-correlation.

1This working paper was later published as Espasa and Mayo-Burgos (2013).
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An important contribution of this paper is to show that subsets of components shar-

ing single common trends can be discovered by pairwise methods. For determining the

cointegration rank in the pairwise models we consider both the Johansen’s approach and

procedures based on information criteria, which are robust to a wide type of heteroskedas-

ticity. Additionally, in the accompanying online appendix we show that our strategy can be

generalized to consider special situations in which some subsets may include two common

trends, one ‘general ’ and one ‘sectorial ’.

The rest of the paper is organized as follows. In §II, we study the statistical foundations

of the pairwise procedure when using the Johansen’s test, and in §III we extend the analysis

for the information criteria-based approach. In §IV we present Monte Carlo evidence and

in §V we apply the pairwise procedure to the US CPI broken down in 159 components. §VI

is devoted to the conclusions.

II Statistical foundations of the pairwise pro-

cedure

General framework and assumptions

The general framework for the models we work with is given by a VAR model for all of

the N components of an aggregate:

Xt = µt + Π1Xt−1 + ...+ ΠkXt−k + εt ⇒ Π(L)Xt = µt + εt, (1)

where Xt is a N × 1 vector; Πi are (N × N) coefficient matrices; εt is a vector of iid

innovations with covariance matrix Σt; µt contains the deterministic components (constants,

trends, seasonal dummies, and outliers and breaks indicators); Π(z) is the characteristic

polynomial; and L is the lag operator. If the system is cointegrated, it can be rewritten as

a Vector Equilibrium Correction Model (VECM):

∆Xt = µt + αβ′Xt−1 + Φ1∆Xt−1 + ...+ Φk−1∆Xt−k+1 + εt, (2)
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where α and β are N × r matrices, with 0 < r < N ; r is the number of cointegration rela-

tionships; αβ′ = −In + Π1 + ...+ Πk; and Φi = −
k∑

j=i+1

Πj. The data structure for which

our procedure is designed can be summarized in five assumptions:

Assumption 1 The N components are generated by the VECM in eq. (2).

Assumption 2 The N components are I(1).

Assumption 3 There are J subsets (with J > 0), each one of size nj (with 0 < j ≤ J),

such that the components of each subset share a unique common stochastic trend. Thus,

in each of those subsets there are nj − 1 cointegration relationships and we denote them as

fully cointegrated subsets.

Assumption 4 The innovations εt of eq. (2) are iid zero mean and multivariate normally

distributed, which implies Σt = Σ. (this assumption is modified in §III).

Assumption 5
T

N1/κ
→≥ c, when [T,N ]→∞, for some c > 0 and κ > 0.

Assumption 6
nj

N1−1/κ →≥ c, when [T,N ] → ∞, for 0 < j < J , and some c > 0 and

κ > 0.

Remark 1 Instead of Assumption 2, we could use the usual assumption that α⊥Φ(1)β⊥ is

of full rank, which will ensure that the components are at most I(1). This new assumption,

say assumption 2 bis, would require proceeding as Johansen (1995) suggests: testing the

significance of the cointegration relationships’ coefficients (β) to detect I(0) variables (that

is how we proceed in the empirical application). Thus, Assumption 2 is only needed for the

simulation exercises of §IV, for the rest of the paper we only need assumption 2 bis.

Remark 2 In principle, assuming that the innovations are iid would be enough for the

Johansen’s procedure to be asymptotically valid, so that the normality imposed in assump-

tion 4 would be unnecessary. However, as it will become clear later in this section, normality

of εt is necessary to guarantee the validity of the inference from the bi-variate models in

which we test cointegration.
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Remark 3 By allowing for outliers and location shifts in eq. (2), the identical distribution

established in assumption 4 could be achieved after correcting for outliers and/or location

shifts which, as Juselius (2015) argues, is a quite general assumption for macroeconomic

VAR models.

Remark 4 Apart from having all its roots outside the unit circle, there is no restriction

on the polynomial (I − Φ1L − ... − ΦkL), additionally the covariance matrix Σ has no

particular restrictions. Thus, we are not imposing any additional restriction on the serial

or cross-correlation of the components.

Remark 5 Even after considering remark 3, the present framework does not allow for

heteroskedasticity in εt. As we argue in §V, although this is not an issue for our empirical

application, it could be so in other cases. Therefore, in §III we generalize our proposal for

the case of heteroskedastic innovations.

Remark 6 As we discuss latter in this section, we use assumptions 5 and 6 to control

gauge and false discoveries when we let N going to infinity.

The pairwise strategy consists of three steps: (i) Test for conintegration in all of the

N(N − 1)/2 pairs of series with the Johansen’s test using a nominal size ϕ (in § III we

consider methods based on information criteria). (ii) Look for the largest subset of series

in which all of them are pairwise cointegrated (fully cointegrated subset). (iii) Repeat

previous step but excluding the series already included in the fully cointegrated subsets

already discovered until no more fully cointegrated subsets are found.

We use the notation nj both as the name of the fully cointegrated subsets that exist in the

true DGP and as their cardinality. For the subsets constructed by the pairwise procedure

we use the notation n̂j.

For each pair of components, a bivariate VAR model has to be estimated, and the lag

length must be determined in each case using some information criteria. Another impor-

tant decision when performing cointegration tests concerns the deterministic structure in

the model, which is particularly relevant for trending variables. We adopt the two step

procedure of Nielsen and Rahbek (2000); first, test the cointegration rank in a VECM that

6



includes all the deterministic components (constant, trends and interventions) in the cointe-

grating relationships and their differences in the VAR. Second, once the cointegration rank

is determined, test the hypothesis that the coefficients of the deterministic components are

zero. Given the asymptotic similarity of the cannonical correlations with respect to the co-

efficient of the trend (see Nielsen and Rahbek, 2000), it would be unnecessary to re-estimate

cointegration relationship if that coefficient turns out to be not significant. Juselius (2006)

adopts this strategy too (see also Doornik et al. (1998) for a discussion on this issue).

Using the outcomes of the cointegration tests and the resulting fully cointegrated subsets,

the final phase of our proposal is to estimate a single-equation model for each component,

including as potential regressors all of the possibly relevant cointegration relationships found

in the previous step, if any, as well as each component’s own lags and lags of other com-

ponents. The selection of the relevant regressors can be carried out by the model selection

algorithm Autometrics (see Doornik, 2009). This modeling strategy is something interme-

diate between the full vector model — which is unfeasible in our context of large N— and

the univariate estimation of each component. Finally, the single-equation models can be

used for forecasting all the components.

As argued by Zivot and Wang (2007), this single-equation strategy is justified by the fact

that the I(0) cointegration relationships, that are included as regressors, can be treated as

known given β′s estimators super consistency.

Asymptotic properties of the pairwise procedure

The properties of the pairwise procedure for discovering fully-cointegrated subsets must

be evaluated in three dimensions: i) Potency: The proportion of correct series that are

included in n̂j. ii) Gauge: The proportion of wrong series that are included in n̂j
2. iii) False

discovery: The discovery of subsets in which none of the pairs are cointegrated.

Potency

In order to include all of the correct series in n̂j we should find one cointegration rela-

tionship in all of the nj(nj − 1)/1 pairs that exist in the true subset.

Since the pairwise procedure involves a large number of cointegration tests (e.g., 4950 for

2The terms ‘gauge’ and ‘potency’ are borrowed from Castle et al. (2011).
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N = 100), it may be thought to raise the probability of false rejection, which may affect the

potency of the procedure. Specifically, if the two series of the pair belong to the same nj,

the problem could be wrongly rejecting the true hypothesis of r = 1 — one cointegration

relationship. In what follows we study this issue in detail.

In the Johansen’s procedure the null hypotheses r = 0 and r = 1 are usually tested

sequentially. Since the asymptotic power of Johansen’s test is 1, finding no cointegration

between pairs in the same nj is not an issue when nj is fixed and T → ∞. Therefore, the

problem could be false rejecting r = 1 in favor of r = 2. If the tests were independent,

the probability of finding one common trend between all of the series in the same nj would

be (1 − ϕ)nj(nj−1)/2, which quickly decreases with nj. But, as Theorem 1 indicates, these

tests are asymptotically equivalent, in the sense that the probability of finding the same

cointegration rank in all of them tends to one as T goes to infinity.

Theorem 1 (Asymptotic equivalence of pairwise cointegration tests in a fully cointegrated

subset). Under assumptions 1 to 4, given a subset of nj pairwise cointegrated series (i.e.,

there are nj − 1 cointegration relationships among them and a single common trend), for a

fixed nj, the probability of finding the same cointegration rank by means of the Johansen’s

test in all of the nj(nj − 1)/2 pairs tends to 1 as T goes to infinity, when all the individual

tests are performed with the same significance level.

Proof See Appendix A

Theorem 1 states that the joint probability of rejecting r = 1 for any number of pairs

between series in nj tends to ϕ. Therefore, even in the case in which the hypothesis of

interest is the universal one (i.e., false rejecting at least one of the nj(nj− 1)/2 hypotheses)

defined in the approaches that try to control multiple testing problems (see e.g., Romano

and Wolf, 2005), p-values need not be corrected.

This result is in line with Johansen and Juselius (2014), who show that the random walk

components of linear combinations of a vector of variables are cointegrated with those of

the original (big) system.

The following proposition deals with the case of nj →∞.
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Proposition 1 Under assumptions 1 to 4, given a subset of nj pairwise cointegrated series,

the expected proportion of pairwise Johansen’s tests that deliver the same cointegration rank

tends to 1 as T →∞, both for fixed nj and when it goes to infinity.

Proof See Appendix B.

Gauge

We now analyze the problem of including wrong series in the estimated fully cointegrated

subsets (n̂j).

Proposition 2 Under assumptions 1 to 6, the expected proportion of wrong elements in

the estimated fully cointegrated subsets can be controlled by setting by setting ϕ = N−1/κ

(for some κ > 0), both when N is fixed and when it goes to infinity.

Proof See Appendix C.

Note that this proposition does not require pervasiveness in the sense of DFM (see, e.g.,

Assumption B in Bai, 2003), it just needs assumption 6. It is also to be noted that the use

of ϕ = N−1/κ requires Assumption 5 to avoid power problems.

False discovery

A false discovery occurs when none of the pairs included in n̂j are truly cointegrated. The

distinction with previous argument is relevant since it allows to explicitly analyze how the

pairwise procedure would work in a situation where there are no cointegrated pairs.

Proposition 3 Setting the nominal size of the Johansen’s tests as ϕ = N−1/κ for κ > 0,

the expected number of false fully cointegrated subsets of size λN (subsets with cardinality

smaller than or equal to λN , with 0 < λ < 1, in which there are none cointegrated pairs

but pairwise cointegration tests indicate that all pairs are cointegrated) tends to zero at a

rate larger than or equal to that of N (1−λN)/κ as T and N go to infinity.

Proof See appendix D.
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This result implies that choosing ϕ as an inverse function of N and disregarding small fully

cointegrated subsets (those with cardinality smaller than or equal to λN) constitutes a

strong protection against false discovery.

In obtaining previous results for gauge and false discovery, the fact that for including

wrong series we need not to reject r = 1 with all of the series in n̂j plays a crucial role.

The bi-variate systems

The strategy described above requires the estimation of systems which are linear transfor-

mations of a larger one because we assume the existence of a large VAR model for all of the

components but estimate several partial bi-variate systems in which we test cointegration.

Linear transformations of a process Xt that follow a (possibly cointegrated) VAR model

have an infinite VAR representation with exponentially decreasing coefficients’ matrices.

If the innovations of the infinite bi-variate VAR representation (say, et) are iid, and the

fitted models have a lag length that increases with T , provided that the used lag length

is Op(T 1/3), usual asymptotic inference is still valid (see, Saikkonen, 1992, Saikkonen and

Lütkepohl, 1996 and Johansen and Juselius, 2014). However, as noted by Johansen and

Juselius (2014), et is a white noise process which need not be iid, as we assumed for εt (the

innovations of the large model). The case of εt being iid Gaussian ensures et also to be iid

Gaussian.

Thus, in order to guarantee that our bi-variate models are valid for inference, we need

Gaussian iid innovations in the model of eq. (2). This explains assumption 4 (see remark 3).

Apart from previous discussion, the strategy of testing for cointegration in bi-variate

models could be thought to imply a loss of power compared to a ‘complete’ model approach

(when feasible). Interestingly, Monte Carlo results (not reported) show that when the

cointegration relationships are pairwise detectable, the power of the pairwise procedure for

finding the true number of cointegration relationships is higher than that of the traditional

Johansen’s trace test. This result is in line with the fact that cointegration relationships are

more easily detectable in systems with fewer stochastic trends (see, e.g., Lütkepohl et al.

(2003) and Johansen (1995)).
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III Extension to the case of unconditional

heterskedastic innovations

There is a large body of applied literature suggesting that the unconditional variance of

the shocks driving the behavior of macroeconomic time series is not stable over time. Most

of the empirical analysis find a decline in the variance of US macro variables during the

so called ‘great moderation’ period that started in the mid 80’s (see, inter alia, Kim and

Nelson, 1999, McConnell and Perez-Quiros, 2000, and Sensier and Van Dijk, 2004).

In this section we describe how our procedure has to be modified to deal with condition-

ally and/or un-conditionally heteroskedastic innovations and analyze the properties of the

modified procedure.

Cavaliere et al. (2010) analyze the impact of non-stationary volatility in the innovations

of cointegrated VAR models on the Johansen’s cointegration tests, and show that inference

based on standard homoskedastic critical values is, in general, invalid.

Cavaliere et al. (2016) study the properties of procedures based on information criteria

for determining the lag length and the cointegration rank in VAR models with innovation

processes that allow a wide class of conditional and un-conditional heteroskedasticity, in-

cluding multiple covariance shifts, variances with broken trends, smooth variance shifts,

and GARCH and stochastic volatility processes. Specifically, the assumption about the

innovations is as follows:

Assumption 7 Denoting et the innovations of the bi-variate systems in which we test for

cointegration, et = ztσt, where σt is non-stochastic and defined by σ(t/T ) for t = 1 . . . T ,

where σ(.) belongs to the space of N × N matrices of càdlàg functions on [0, 1], and zt is

a martingale difference sequence with respect to the filtration Ft, with conditional variance

matrix ht = E(ztz
′
t|Ft) satisfying suptE||zt||4r < ∞, for some r > 1 and T−1

∑T
t=1 ht

p→

E(ztz
′
t) = Ip, where

p→ denotes convergence in probability as T →∞.3

3As showed by Johansen and Juselius (2014) et is a linear process in εt, the innovations of the full system.
Thus, this assumption relaxes assumption 4 in the sense that we do not need εt of eq. (2) to be normal iid
anymore. For example if εt is a non-stationary independent sequence of N(0,Σt) with Σt = IN up to t = t∗

and Σt = λIN , for some λ > 0, for t > t∗ (case C in the numerical results of Cavaliere et al. (2016)), et
maintains this property.

11



The procedure consists of selecting the optimal lag length (k̂) and cointegration rank (r̂)

either sequentially or jointly according to a generic information criterion IC. In the joint

procedure, k̂ and r̂ are chosen as follows:

(k̂, r̂) = arg min
r=0,...N ;k=0,...K

IC(k, r), (3)

where K denotes a given maximum number of lags.

Under assumption 7, provided that the variables in the system are at most I(1) and that

the penalty function (pT ) related to the information criterion satisfies pT
T

+ 1
pT
→ 0 as T →

∞, Cavaliere et al. (2016) show that (k̂, r̂)
p→ (k0, r0), where k0 and r0 denote the true lag

length and cointegration rank, respectively (see theorem 1 in Cavaliere et al., 2016). Among

the three most widely used information criteria (AIC, BIC and HQ), the AIC is the only

one which does not satisfy the required condition on its penalty function.4

In the following three propositions we show that our pairwise approach would remain

valid when determining the cointegration rank by means of information criteria instead of

Johansen’s tests. But before that it is important to mention that we will assume that

the results of Cavaliere et al. (2016), which are derived for finite order VAR models, are

valid for the bi-variate models in which test for cointegration that, as discussed at the end

of previous section, are approximations to infinite models with exponentially decreasing

coefficient matrices. Though providing theoretical results on this issue is out of the scope

of this paper, the fact that procedures based on information criteria remain robust when

the lag length is under-specified (see Cavaliere et al. (2016)), and our simulation results in

next section, suggest the procedure based on information criteria is still valid in our case of

interest.

Proposition 4 Under assumptions 1 to 3 and 7 given a subset of nj pairwise cointegrated

series (i.e., there are nj − 1 cointegration relationships among them and a single common

trend), when determining the cointegration rank of the pairs by means of an information

criterion whose penalty function (pT ) satisfies pT
T

+ 1
pT
→ 0 as T → ∞, the probability of

4Interestingly, Cavaliere et al. (2018) show that information criteria procedures remain valid for partial
systems that condition on the excluded variables, independently of whether the conditioning variables are
weakly exogenous or not.
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finding a cointegration rank equal to 1 in all of the nj(nj − 1)/2 pairs tends to 1 as T goes

to infinity, for a fixed nj. When nj → ∞ the expected proportion of pairs that deliver a

cointegration rank of 1 tends to 1 as T →∞.

The proof follows directly from theorem 1 of Cavaliere et al. (2016) and the proof of

proposition 1.

Proposition 5 Under assumptions 1 to 3, and 7, when T →∞ and N is fixed the expected

proportion of wrong inclusions in the estimated fully cointegrated subsets (n̂j) constructed

by means of tests based on information criteria, tends to zero. When (T,N)→∞, restricting

the ratio N/nj to be Op(log(T )) (when using the BIC) or Op(log(log(T ))) (when using the

HQC) ensures that the expected proportion of wrong inclusions tends to zero as [T,N ]→∞

Proof See appendix E.

Proposition 6 Under assumptions 1, 2 and 7, when estimating the cointegration rank by

means of an information criterion, the expected number false fully cointegrated subsets of

size λN(subsets of λN I(1) series in which there are none cointegrated pairs but pairwise

cointegration tests indicate that all pairs are cointegrated) tends to zero as T and N go to

infinity (for any 0 < λ < 1).

The proof follows directly from the proof of proposition 3 and theorem 1 of Cavaliere

et al. (2016).

The three previous propositions indicate that the cointegration rank of the pairs could also

be determined by means of procedures based on information criteria. The fact that these

procedures are robust to a wide class of conditional and un-conditional heteroskedasticity

implies that our procedure would remain valid in those cases. Additionally, Cavaliere et al.

(2010) shows that the Gaussian pseudo maximum likelihood estimation of the parameters

of the cointegrated VAR remains consistent under assumption 7. This implies that the

single-equation forecasting strategy described §II would remain valid under assumption 7

when using the approach based on information criteria.
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IV Simulations

The Monte Carlo experiments in this section are designed with the objective of analyzing

the finite samples behavior of our procedure both when determining the cointegration rank

by means of the Johansen’s test and when using information criteria procedures.

General design of the experiments

We consider three alternative DGPs.

DGP 1

The general expression of the VECM for the N series is eq. (2) with only one lag, µt = αc0

(i.e., the series do not have deterministic trends). We simulate a situation in which a subset

n1 of the N components share a unique common trend, and the rest of the components have

their own trends. Thus, we will have N − n1 + 1 ‘common’ trends in the system. Without

loss of generality, we set matrix β such that:

β′ =



β2 1 0 0 0 0 0 · · · 0

β3 0 1 0 0 0 0 · · · 0

· · ·

βn1 0 0 0 · · · 1 0 · · · 0


r×N

,

where r = n1 − 1. This normalization was suggested by Clements and Hendry (1995).

Different normalizations change the exact shocks that drive the long-run behavior of the

n1 variables, but not the fact that they are determined by N − r shocks and r adjusting

mechanisms. The parameters βj are all equal to −1, for j = 2, ..., n1.
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For the sake of simplicity, in this DGP matrix α is set to have the following structure:

α =



0 0 0 · · · 0

−α2 0 0 · · · 0

0 −α3 0 · · · 0

· · ·

0 0 0 · · · −αn1

0 0 0 · · · 0

· · ·

0 0 0 · · · 0


N×r

=

αU
αD

 , (4)

where sub-matrix αU is n1×r; sub matrix αD is a matrix of zeros with dimensions (N−n1)×r;

and the values αi are taken from the uniform distribution with parameters [0.15, 0.3]. These

parameters are motivated by results in Espasa and Mayo-Burgos (2013) for CPI series.

In this case, the long run impact matrix (‘C’) related to the first n1 variables is full of

zeros, except for the first column. This simplicity of the long run structure is eliminated in

DGP 3.

In this first DGP, Φ1 is a diagonal matrix whose diagonal elements are drawn from the

uniform distribution with parameters [0.5, 0.8]. Given that the residuals’ covariance is also

diagonal, there is no short run correlation between any of the N series. This simplicity is

eliminated in DGPs 2 and 3.

For the innovations, we consider two possibilities, one with iid Gaussian innovations, and

one with unconditionally heteroskedastic ones. In the first case (DGP1-iid), εt ∼ N(0, IN).

The second case (DGP 1-hetero) mimics the case C of Cavaliere et al. (2016), where εt is a

non-stationary independent sequence of N(0,Σt) processes, where Σt = IN for t < b0.5T c

and Σt = 3IN for t ≥ b0.5T c, with bAc being the operator that takes the integer part of

number A.5

5Since the innovations of the bi-variate systems, say et, are linear processes in εt, the covariance matrix
of et maintains the property of being constant up to t = b0.5T c and increasing by a factor of 3 from then
on.
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DGP 2

DGP 2 is the same as DGP 1, except that we allow for some short-run interactions by

including non-zero coefficients in the off-diagonal elements of matrix Φ1. To do so, we first

reorder the rows of matrices β and α to have the series in n1 in positions biN/n1c, for

i = 1, ..., n1. Then, denoting φij the elements of Φ1, we set:

φij =


pi if i = j,

ui if i 6= j, and max(i− q, 1) ≤ j ≤ min(i+ q,N),

0 otherwise,

for i, j = 1, ..., N . Parameters pi are taken from the uniform distribution U[0.4,0.75]; |ui| is

taken from the uniform distribution U[0.05,0.1]; and

q =


5 if 5 < i < N − 5,

10− i if i ≤ 5,

10− (N − i) if i ≥ N − 5.

(5)

In this way, each series has non-zero short-run dependence with other nine (see Bai and

Ng, 2002 for a similar strategy to generate short-run dependence). This DGP generates

quite complex short-run dynamics, and there are no bivariate subsystems with purely finite

VAR structures.

We consider the cases of iid and unconditionally heteroskedastic innovations in the same

way as in DGP 1. Thus, we also have DGP 2-iid and DGP 2-hetero.

DGP 3

This DGP is the same as DGP 2 (non-diagonal Φ1), except that we consider a more

complex matrix α. We set:
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α =



α11 0 0 0 0 0 0 0 · · · 0

−α21 −α22 · · · −α2,q2 0 0 0 0 · · · 0

0 −α32 −α33 · · · −α3,q3+1 0 0 0 · · · 0

0 0 −α43 −α44 · · · −α4,q4+2 0 0 · · · 0

...

0 · · · 0 −αi,i−1 −αi,i · · · −αi,qi+i−2 0 · · · 0

...

0 · · · 0 0 0 · · · 0 0 · · · −αn1,n1−1

0 0 0 0 0 0 0 · · ·
...

0 0 0 0 0 0 0 · · · 0



,

(6)

where:

qi =


b0.3× n1c if b0.3× n1c+ i− 2 < n1 − 1,

i− (n1 − 1) otherwise

(7)

In this way, there are no weakly exogenous variables inside n1, each variable reacts to

0.3×n1 cointegration relationships (except for the first one and those in the last positions).

For instance, with n1 = 40, each variable reacts to 12 cointegration relationships. Therefore,

the long run impact matrix related to the variables in n1 does not have zeros anymore.

As for previous DGPs, αi,i−1, for i = 2, ..., n1, is taken from the uniform distribution

with parameters [0.15, 0.3]. To avoid explosive patterns, αij for j 6= i− 1 is taken from the

uniform distribution with parameters

[
0.15

qi/2
,

0.3

qi/2

]
.

Again, we allow the possibility of iid and unconditionally heteroskedastic innovations in

the same way as in DGP 1 and DGP 2. Thus, we also have DGP 3-iid and DGP 3-hetero.

For the six DGPs described above, we consider three scenarios. In all of them, we set

N = 100, and they differ in the choice of n1 — recall that we are using the notation n1

both as an indication of the size of the ‘fully cointegrated subset’ and as its label. The three

choices are n1 = 10, n1 = 25 and n1 = 40. Additionally, we consider three possible sample
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sizes: T = 100, T = 200 and T = 400.

For each DGP, scenario and sample size, we perform 500 Monte Carlo replications. In

each replication, the objective is to discover the series in n1 by means of the procedure

described in II (we disregard subsets with 4 or less series for avoiding false discoveries).

At this point, a word about the number of tests included in the Monte Carlo experiments

and the computing time is in order. For a particular DGP, scenario and sample size we have

2.475 million sub-models (4950 pairs of series for each of the 500 replications). Since we

have six DGPs, three scenarios and three sample sizes we have (6×3×3)×2.475 = 133.650

million sub-models to estimate. Additionally, the lag length for each of the 4950 sub-models

of a particular replication is unknown. When using the Johansen test, we select it with the

AIC in a model with one cointegration relationship and admitting between one and three

lags in the VECM representation, which multiplies the number of sub-models to estimate by

three. When using the information criteria procedures, we use the BIC to choose between

the 9 possible models that emerge when considering cointegration ranks between 0 and 2

and lag lengths between 1 and 3, this multiplies the number of models by 9.

In a personal computer equipped with Windows 10 64 bits, with a processor i7-6700HQ of

2.60Hz, and 16GB of ram it takes 45 seconds to perform the 4950 pairwise Johansen’s tests

selecting models between 1 and 3 lags. When using the information criterion procedure the

joint determination of the cointegration rank and the lag length of the 4950 models takes

95 seconds.

Monte Carlo results

iid innovations

Gauge and potency of the pairwise approach for the three DGPs with iid innovations are

included in table 1. Since false discovery is very low for all scenarios and sample sizes, we

omit these results in this part of the paper and include them in appendix G.

Focus first on the first panel of the table (DGP 1) and the case of Johansen’s tests. The

pairwise procedure applied with Johansen’s test performs reasonably well for all scenarios

and sample sizes. For T = 400, the probability of including all of the correct series is close to

99%. This outcome is in line with Theorem 1, which implies that the asymptotic probability
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of finding a cointegration rank equal to 1 in all of the true cointegrated pairs tends to (1−ϕ)

as T →∞, with ϕ being the nominal size of the individual tests (we are using ϕ = 1%).

On the other hand, the number of wrong series is quite low. For example, in scenario

3, for T = 400, the expected number of wrong series is 0.002 × (100 − 40) = 0.12. In

appendix C we indicate that an upper bound for the expected number of wrong series in

n̂1 is (N − n1)ϕ; which means 0.6 series in scenario 3. This result shows that the actual

average number of wrong series is far from this upper bound, meaning that the assumption

that lead to that bound is quite extreme.

Finally, although gauge remains rather stable when the sample size changes, potency

deteriorates as T decreases. For instance, with n1 = 25 (scenario 2), we go from a potency

of 99% with T = 400 to 67% with T = 100. Still, in this case, we get a low gauge and

capture 67% of the correct series.

Focus now on the case of determining the cointegration rank by the BIC. Results are in

line with the theory included in §III. In that section we showed that the probability finding

r = 1 between all of the truly cointegrated series is asymptotically 1 and the probability of

including wrong series is asymptotically 0, which is in line with the gauge and potency of

table 1 for T = 200 and T = 400. For T = 100 we also observe a relevant deterioration,

particularly in gauge.

The comparison of the information criteria procedure with the one based on Johansen’s

tests shows that although both performs very well in large samples (T = 200 and T = 400),

the former is somewhat better. In short samples the information criteria approach dominates

in terms of potency and the Johansen’s alternative in terms of gauge.

Second panel of table 1 includes the results for DGP 2. The performance of the Johansen’s-

based procedure is somewhat worse than for DGP 1, except for scenario 3 with T = 100,

where the deterioration in terms of potency is substantial. In this situation (scenario 3 and

T = 100), we include, on average, 0.26× 40 = 10.4 correct series and almost no wrong ones

(0.004× (100− 40) = 0.24). As the sample size increases, results improve in terms of gauge

and potency. For T = 400, the procedure almost recovers its performance of DGP 1 in all

scenarios. These comments are also valid for the information criteria-based procedure.
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The comparison of the information criteria procedure with the one based on Johansen’s

tests shows, again, that although both performs very well in large samples (T = 200 and

T = 400), the former is somewhat better, except for scenario 3. In short samples the

information criteria procedure dominates.

The third panel of table 1 includes the results for DGP 3, which are similar to those

of DGP 2 for both types of procedures. We get a deterioration in small samples, but as

the sample size increases we recover the results of DGP 1. Although in small samples

the deterioration in terms of gauge of the Johansen-based procedure seems important, the

figures in the table imply an average of just 0.7, 1.2 and 0.5 wrong series in scenarios 1, 2

and 3, respectively.

As discussed in the introduction, an alternative strategy to ours may be the estimation

of Dynamic Factor Models. As we argued, since we are dealing with non-pervasive factors,

small sizes of the groups, and serially and cross-correlated idiosyncrasies, DFM cannot be

expected to show a good performance. Still, as the DFM assumptions about pervasiveness,

and serial and cross-correlation of the residuals are asymptotic, it could be of interest to

compare our approach with DFM alternatives.

We applied the usual Principal Components strategy and the QML approach of Doz

et al. (2012), and grouped the series with statistically significant factor loadings. Results

(available upon request) show that our procedures (both the Johansen and the information

criteria based) dominate in almost all situations.

Unconditionally heteroskedastic innovations

As argued in §III the Johansen’s test is not valid under unconditionally heteroskedastic

innovations, even asymptotically. Thus, in this section we focus just in the approach based

on information criteria. Gauge and potency for the three DGPs, the three scenarios and the

three sample sizes described above are included in table 2, we use the BIC for determining

the cointegration rank. Again, results about false discovery are included in appendix G. As

expected from §III, results do not differ significantly from the case of iid innovations. In

moderately large samples (T = 200 and T = 400) we observe a very good performance both

in terms of gauge and potency in all DGPs and scenarios. With T = 100 we observe an
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TABLE 1:
Gauge and potency of the pairwise strategy in DGPs with iid innovations (nominal size of
Johansen’s tests ϕ = 0.01)

n1 = 10 n1 = 25 n1 = 40

Gauge Potency Gauge Potency Gauge Potency

DGP 1 - Johansen
T=100 0.4 77.0 0.2 67.0 0.2 63.2
T=200 0.3 96.4 0.2 95.3 0.1 94.5
T=400 0.3 99.2 0.2 99.0 0.2 98.6

DGP 1 - BIC
T=100 2.2 95.0 0.7 84.0 1.7 81.3
T=200 0 100 0 98 0 100
T=400 0 100 0.67 100 0 100

DGP 2 (non-diag. Φ) - Johansen
T=100 2.2 67.5 1.1 60.2 0.4 26.0
T=200 0.2 90.6 0.2 84.2 0.1 80.5
T=400 0.2 98.7 0.2 98.2 0.1 96.9

DGP 2 (non-diag. Φ) - BIC
T=100 1.1 90.0 0.7 84.0 0.8 43.8
T=200 0.6 100.0 0.0 92.0 0.8 91.3
T=400 0.0 100.0 0.0 100.0 0.8 98.8

DGP 3 (non-diag. Φ and complex long-run structure) - Johansen
T=100 7.0 70.3 4.9 69.3 1.3 38.1
T=200 0.5 95.1 0.4 95.5 0.3 92.9
T=400 0.6 98.1 0.5 99.0 0.4 98.7

DGP 3 (non-diag. Φ and complex long-run structure) - BIC
T=100 2.8 90.0 1.3 92.0 0.8 50.0
T=200 0.0 100.0 0.0 94.0 0.0 92.5
T=400 0.0 100.0 0.0 100.0 0.0 98.8

- Gauge = 100
(N−n1)Nexp

∑Nexp
i=1 Z2,i. - Pot = 100

n1Nexp

∑Nexp
i=1 Z1,i. - Z2 = number of wrong series

included in n̂1. - Z1 = number of correct series included in n̂1. - Nexp = number of experiments
(500). - Scenario 1: n1 = 10. - Scenario 2: n1 = 25. - Scenario 3: n1 = 40.

important deterioration of potency in scenario 3 in all DGPs, and also a relevant increase

of gauge in scenarios 1 and 2 of DGPs 2 and 3.

Before concluding this section we recall that, as mentioned in the introduction, the pair-

wise approach can be extended for cases in which the set series under consideration has one

general and several sectorial common trends. Interested readers can find the analysis of this

case in appendix F.
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TABLE 2:
Gauge and potency of the BIC-based pairwise strategy in DGPs with unconditionally het-
eroskedastic innovations

n1 = 10 n1 = 25 n1 = 40

Gauge Pot Gauge Pot Gauge Pot

DGP 1
T=100 0.0 85.0 0.7 78.0 0.0 73.8
T=200 0.0 95.0 0.0 98.0 0.8 96.3
T=400 0.0 100.0 0.0 100.0 0.8 100.0

DGP 2 (non-diagonal Φ )
T=100 3.3 90.0 2.0 94.0 1.7 43.8
T=200 0.6 100.0 0.0 92.0 0.0 93.8
T=400 0.0 100.0 0.7 100.0 0.0 100.0

DGP 3 (non-diagonal Φ, complex long-run structure)
T=100 2.2 90.0 3.3 94.0 0.0 41.3
T=200 0.0 95.0 0.0 94.0 0.0 90.0
T=400 0.0 95.0 0.0 100.0 0.0 100.0

See notes to table 1.

V Empirical application: US CPI

In this section we apply the pairwise procedure to the US CPI. We focus just on the

forecasting exercise, detailed results about the cointegration tests and the conformation of

the fully cointegrated subsets are available upon request.

The main aim of the disaggregated analysis proposed in this paper is to arrive to a better

understanding, modeling and forecasting of the components of a macro variable, which

usually will also end up with a better understanding of the aggregate. As a by-product of

a disaggregated analysis we have that aggregating the forecasts of the components we get

an indirect forecast of the aggregate. In arriving to the specification of fully-cointegrated

subsets and to the forecasting models of the components we apply a battery of tests, which

give guaranties to the validity of the results. But if the cointegrated subsets are going to

be really relevant we expect that the mentioned indirect forecast for the aggregate is not

significantly worse — hopefully significantly better — than the direct forecast. Therefore,

comparing the direct forecast with this indirect one we could end up with an extra support

for our disaggregated strategy.
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Data

The CPI break down used in this analysis corresponds to the maximum disaggregation

level available to the public in the Bureau of Labor Statistics (seasonally un-adjusted CPI-

U for all urban consumers) for the period 1999.1 − 2016.12 (216 observations). The total

number of components is 174. Not all the series have data for the whole sample period,

after dropping those with less than 150 observations we keep 169 components. From these

series we exclude nine that evolve by steps (regulated prices) so that we end up with 160

series which, considering 2016 weights, represent 92% of the CPI6. Among the remaining

series, Owners’ equivalent rent of primary residence weights approximately 24% of the CPI,

which, comparing with other developed economies CPI or other aggregated variables in the

US, is quite a rare situation.

In order to avoid the global results to be driven by the ability to forecast a single series, we

also exclude Owners’ equivalent rent of primary residence from the analysis. Thus, all in all,

we will work with 159 series, the remaining ones are neither considered for the construction

of the fully cointegrated subsets, nor for the forecasting exercises. We denote the aggregate

corresponding to the 159 series as CPI∗. An indirect forecast of the overall aggregate

(the CPI) could be done from a regression of the CPI on the CPI∗, or by forecasting the

excluded components individually and aggregating those forecasts.

Unconditional heteroskedasticity tests

We performed two types of unconditional heteroskedasticity tests; the White (1980) tests

using only squares and using squares and cross products, and tests for a single shift in

unconditional variance as those considered by Sensier and Van Dijk (2004). In both cases,

we found almost 90% of the series to be homoskedastic (detailed results are available upon

request).

This finding, led us to focus the application using Johansen’s test. Anyway, as we com-

ment below, the procedure based on information criteria led to the same results.

6The nine excluded series are: Tuition other school fees and childcare, College tuition and fees, Ele-
mentary and high school tuition and fees, Child care and nursery school, Technical and business school
tuition and fees, Postage, Delivery services, Limited service meals and snacks, Other lodging away from
home including hotels and motels
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Design of the forecasting exercise

In order to obtain economically and statistically sensible cointegration relationships be-

tween the components of the CPI∗ we consider only those which satisfy the following four

conditions: (i) the cointegration relationship does not require a deterministic trend, (ii)

coefficients of both prices are statistically significant, (iii) the bivariate VAR characteristic

polynomial’s second largest root is not close to one, and (iv) the cointegration relationship

is stable over time.

Cointegration tests are performed at the 1% of significance and the number of lags for

each pair is determined with the AIC in a model with one cointegration restriction and

without trend in the cointegration relationship. Centered seasonal dummies are included in

all models. Subsets with less than five series were disregarded 7.

The presence of outliers may seriously distort cointegration tests results. For controlling

this issue, we adopt a strategy that combines the GLS procedure of Saikkonen and Lütkepohl

(2000) and Lütkepohl et al. (2004) for testing cointegration with the Impulse Indicator

Saturation (IIS) technique for detecting outliers (see Santos et al., 2008, Johansen and

Nielsen, 2009, and Castle et al., 2012)). Outliers detected with IIS are used in the pairwise

GLS cointegration tests.

We found 7 subsets that jointly include 41 series, which represent 25.8% of the components

and 23.5% of the total weight we are considering. When applying the procedure based

on information criteria (BIC) to determine the cointegration rank, the same 7 groups are

obtained.

For building the single-equation models we use the automatic model selection algorithm

Autometrics, in which the initial big model to be reduced is called General Unrestricted

Model (GUM), and includes IIS (see Doornik, 2009 and Castle et al., 2011).

To assess the forecasting accuracy of our procedure we compare the forecast of the ag-

gregate obtained indirectly by aggregating the forecasts of the components with a direct

forecast from a scalar model of the aggregate, and with an indirect procedure in which all

7We performed previous seasonal unit root test tests as proposed by Osborn et al. (1988) to all of
the components. The results indicate that they do not show seasonal unit roots in general and that the
assumption of only one unit root, linear growth and deterministic seasonality seems sensible.
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components are forecast with univariate models. We denote our indirect approach by I-PW

(the ‘I’ stands for indirect and ‘PW’ for pairwise), the direct one by D, and the univariate

indirect by ‘I-B’ (indirect basic).

For these approaches (D, I-PW and I-B) we consider three broad possibilities depending

on the regressors to be included in the GUM. Apart from own lags, seasonal dummies,

outlier indicators, and cointegration relationships (when it is the case), we may include:

a) No other regressor, b) Lags of the aggregated CPI∗ (only for the indirect procedures),

c) Lags of eight broad categories which add up to the CPI. We denote this last option as

Dissaggregated information (DI)

For each of the three possibilities (a to c), in the I-PW procedure series which do not

belong to any fully cointegrated subset can be modeled individually or all together in a

scalar model for the sub-aggregate that adds up all those series, we denote the latter option

as I-PW-Rest. If forecasting the components which do not belong to any fully cointegrated

subset is also of interest, one could proceed as in Guerrero and Peña (2003), whose general

combining rule allows to produce individual forecasts restricted to add up to the forecast of

the aggregate.

Thus, we have six different I-PW possibilities, three I-B, and two direct (D). For the

D and I-B alternatives, we add an additional possibility consisting of including dynamic

factors estimated from all the disaggregates (D-DFM and I-B-DFM). Therefore, we end up

with 13 alternatives8.

Forecasting comparison

Table 3 includes the results of a pseudo out of sample forecasting exercise for the evaluation

period 2011.1− 2016.12. At each month of this period the 13 forecasting models described

above are estimated using information up to the previous month, and multi-step ahead

forecasts are produced for horizons H = 1 to H = 12. The computation of the fully

cointegrated subsets, and the corresponding cointegration relationships, is carried out only

each December. Hence, in PW approaches we are using less information than the truly

8In models D-DFM and I-B-DFM the q-dimensional factors (F ) are computed from the first difference
of all the components. The optimal number of factors is chosen with the information criteria of Bai and Ng
(2002). The factors are forecast in a VAR model, where lags are selected with Autometrics with correction
of large residuals.
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available, except in January.

First row of table 3 includes the root mean squared forecast error (RMSFE) of ∆12log(CPI∗)

for horizons H = 1 to H = 12 of the direct procedure. All the other values in the table are

ratios with respect to the first row. Table 4 includes p-values for the Diebold-Mariano tests

for comparing the RMSFE of the I-PW and I-PW-Rest with selected competitors.

The main conclusions of the forecasting exercise are the following:

i. Table 3 shows that the use of disaggregated information in a scalar model for the

aggregate (approach I-DI), as proposed by Hendry and Hubrich (2011), improve the

RMSFE between 2 and 8 percentage points, and these improvements are statistically

significant for horizons 7 to 12.

ii. The inclusion of dynamic factors extracted form the disaggregates improves the forecast-

ing accuracy only in short horizons, but the improvements are statistically significant

only for one step ahead forecasts.

iii. When modeling the disaggregates without including additional information beyond the

own lags (I-B approach in row 4 of table 3) the forecasting accuracy for short and

medium horizons (1 to 6) is similar (not statistically distinguishable) to that of the

baseline. For long horizons improvements in RMSFE range from 5 to 12 percentage

points and are statistically significant (but it is to be noted that for large horizons the

number of independent forecasts is small, 6 for H = 12).

iv. The I-PW approach (row 8) delivers better results than the baseline in all horizons.

Reductions in RMSFE range from 10 to 12 percentage points and are statistically

significant.

v. The comparison between I-PW and I-B indicates that the former beats the latter in

horizons 1 to 10 and the gains range between 1 and 12 percentage points. As table 4

shows, these differences are statistically significant for horizons 1 to 7.

vi. The I-PW-Rest approach produces a small deterioration in the RMSFE with respect to

I-PW for horizons 1 to 3, but differences are not statistically significant (see last line
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of table 4). For horizons 4 to 12 improvements in RMSFE of the I-PW-Rest approach

with respect to I-PW are remarkable. Starting with a RMSFE gain of 1 percentage

point, the differences in favor of I-PW-Rest increase with the forecasting horizon and

reach 22 percentage pints in horizon 12. As table 4 shows the differences are statistically

significant for horizons 6 to 12.

vii. The forecasting gains of I-PW-Rest with respect to the baseline are even more re-

markable. Staring from 7 percentage points in horizon 1, improvements in RMSFE

systematically increase with the horizon to reach 33 points in H=12.

In summary, the pairwise approach performs better than all other alternatives considered

in this paper, and it is the only approach that beats the baseline in all horizons. It gets bigger

improvements in forecasting accuracy when using the restricted alternative (I-PW-Rest).

TABLE 3: Relative RMSFE ∆12log(CPI∗). (First row: RMSFE for the baseline. All the
others are ratios with respect to the first)

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8 H=9 H=10 H=11 H=12

(1) D (baseline) 0.26 0.46 0.61 0.71 0.80 0.90 1.02 1.14 1.25 1.36 1.46 1.57
(2) D-DI 0.98 0.95 0.93 0.95 0.95 0.93 0.92* 0.92** 0.92** 0.93** 0.94** 0.95**
(3) D-DFM 0.93** 0.93 0.96 0.97 0.99 1.01 1.02 1.03 1.02 1.02 1.02 1.02

(4) I-B 0.97 1.01 1.01 0.99 0.98 0.97 0.95* 0.92** 0.90** 0.89** 0.89** 0.88**
(5) I-B-CPI 0.97 0.99 1.01 1.03 1.05 1.07* 1.06* 1.04 1.03 1.04 1.04 1.04
(6) I-B-DI 0.98 0.99 0.97 0.95 0.94 0.92* 0.89** 0.87** 0.85** 0.85** 0.84** 0.83**
(7) I-DFM 0.94 0.99 1.04 1.07 1.09* 1.08* 1.05 1.02 1.00 0.98 0.97 0.96

(8) I-PW 0.89** 0.89** 0.90** 0.88** 0.88** 0.88** 0.89** 0.89** 0.88** 0.88** 0.89** 0.89**
(9) I-PW-CPI 0.93 0.97 1.01 1.02 1.04 1.04 1.03 1.02 1.01 1.01 1.01 1.01

(10) I-PW-DI 0.96 0.97 0.96 0.95 0.94 0.91 0.90** 0.87** 0.86** 0.87** 0.86** 0.86**

(11) I-PW-Rest 0.93 0.91 0.91 0.87 0.83* 0.78** 0.76** 0.75** 0.72** 0.69** 0.67** 0.67**
(12) I-PW-Rest-CPI 0.94 0.98 1.01 0.99 0.96 0.90 0.87* 0.84** 0.81** 0.78** 0.76** 0.75**
(13) I-PW-Rest-DI 0.99 0.99 1.00 0.96 0.91 0.83* 0.79** 0.76** 0.71** 0.70** 0.66** 0.65**

* Significantly different from the baseline at the 5% level using the Diebold-Mariano test.
** Significantly different from the baseline at the 1% level using the Diebold-Mariano test.

TABLE 4: P-values of Deibold-Mariano tests for selected comparisons

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8 H=9 H=10 H=11 H=12

4 vs 8 0.00 0.01 0.02 0.03 0.04 0.04 0.07 0.19 0.26 0.40 0.49 0.38
2 vs 8 0.05 0.14 0.30 0.21 0.18 0.28 0.30 0.27 0.16 0.11 0.07 0.07
6 vs 8 0.03 0.03 0.06 0.06 0.06 0.20 0.47 0.20 0.16 0.14 0.05 0.01
2 vs 11 0.18 0.27 0.40 0.25 0.14 0.09 0.05 0.03 0.01 0.00 0.00 0.00
6 vs 11 0.17 0.13 0.23 0.17 0.09 0.04 0.04 0.06 0.04 0.02 0.02 0.03
8 vs 11 0.18 0.40 0.45 0.44 0.27 0.08 0.04 0.02 0.01 0.00 0.00 0.00

- Row names refer to the lines of table 3
- The null hypothesis is that the RMSFE are equal.
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VI Concluding Remarks

In this paper we studied the properties of a pairwise procedure for testing cointegration

in all possible pairs between the components of an aggregate at the maximum level of

disaggregation. This procedure allows to discover subsets of series that share a unique

common trend (fully cointegrated subsets).

As our methodology does not rely on any cross-sectional averaging procedure, we need

neither to assume pervasiveness of the common trends, nor to impose special restrictions

on serial or cross-correlation of idiosyncratic components. Furthermore, we do not need the

cross-sectional dimension to go to infinity.

We showed that the main theoretical results are valid when determining the cointegration

rank of the pairs by means of the Johansen’s approach and when using procedures based

on information criteria, which are robust to a wide type of conditional and unconditional

heterosckedasicity in the innovations of the models. We also argued that the pairwise

approach can be extended for sets of macro variables (not necessarily components of a

single one) with general and sectorial trends.

We applied the procedure to the US CPI broken down in 159 components. Our proposal

for forecasting the aggregate is to do it indirectly, by constructing single equation models

for each component including the restrictions derived from the fully cointegrated subsets

and, then, adding up the components’ forecast. In a forecasting competition exercise we

compared the ability of our procedure for forecasting the aggregate with other direct and

indirect alternatives. The results show that disaggregation could be greatly relevant for

forecasting, and it can be even better when it is done selectively. Our results suggest that

the pairwise approach shows a promising way for choosing useful disaggregations. Therefore,

if disaggregated information exists, it is not efficient to ignore it, and looking for single-trend

subsets of components is a useful and feasible strategy to exploit that information.
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Appendix A FOR ONLINE PUBLICATION

ONLY: Proof of theorem 1

For simplicity, and without loss of generality, no deterministic terms are considered in

this proof. From the Granger representation theorem we can write any individual series,

say Xa, in n1 as:

Xat = δaCTt + wat; a = 1, ..., n1, (A.1)

where CTt is a random walk (the common stochastic trend) and wat is a stationary process.
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Defining the vector Xt as [Xat, Xbt]
′, for [a, b] = 1, .., n1 and a 6= b, the Johansen’s pro-

cedure consists of, firstly, concentrating out the model with respect to αβ′, which is done

by regressing ∆Xt and Xt−1 on (∆Xt−1, ...,∆Xt−k+1), to obtain the residuals R0t and R1t,

respectively. Define Ri as the 2×T matrix [Ri1, ..., RiT ]′, for i = 0, 1. Then, define matrices

Sij as T−1RiR
′
j. The likelihood ratio test for the null r = 1 vs. r = 2 is: −T ln(1 − λ̂2),

where λ̂2 is the smallest eigenvalue of the generalized eigenvalue problem:

(S10S
−1
00 S01)v = λS11v, (A.2)

whose eigenvalues are the solution of, |λS11 − S10S
−1
00 S01| = 0.

Assume that matrices Sij refer to the vector , Xt = [X1t, X2t]
′. We now derive the test

statistic for any other pair in n1 given that for Xt. From eq. (A.1), any series in n1 can

be expressed as linear combination of any other series in n1 and a stationary component.

Thus, we can write:

Xat = γa1X1t + ηa1,t;

Xbt = γb2X2t + ηb2,t;
(A.3)

call X∗t = [Xat, Xbt]
′ and assume, without loss of generality, that p∗ ≥ p (where p∗ is the

lag length of the model for X∗t , and p is the lag length of the model for Xt). Writing the

auxiliary regressions for ∆X∗t and X∗t−1 to obtain R∗0t and R∗1t, and using eq. (A.3), it can

be shown that the new (2× 2) matrices S∗ij are:

S∗ij = T−1(ΓRi + ei)(ΓRj + ej)
′, for [i, j] ∈ [1, 2], (A.4)

where Γ =

γa1 0

0 γb1

, and ei and ej are stationary processes. Then,

S∗11 = T−1[ΓR1R
′
1Γ + ΓR1e

′
1 + e1R

′
1Γ + e1e

′
1], (A.5)

where we used Γ = Γ′.

In eq. (A.5), all terms inside the brackets are Op(T ), except for ΓR1R
′
1Γ, which is Op(T 2)9.

9Since ΓR1 is I(1) with zero mean, its variance is Op(T ) and ΓR1R
′
1Γ is Op(T 2). Since e1 is I(0) with
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Thus, S∗11 is Op(T ) and its long-run behavior is dominated by ΓS11Γ. That is, S∗11 ' ΓS11Γ

for large T .

The the generic expression for S∗ij (which is Op(1) except for S∗11) is:

S∗ij = ΓSijΓ + Ωij, i, j ∈ [1, 2], (A.6)

where Ωij = T−1[ΓRie
′
j + eiR

′
jΓ + eie

′
j] is Op(1), for i, j ∈ [1, 2].

The new eigenvalue problem is: (S∗10S
∗−1
00 S∗01)v

∗ = λ∗S∗11v
∗. Using eq. (A.6), we get:

[(ΓS10Γ + Ω10)(ΓS00Γ + Ω00)
−1(ΓS01Γ + Ω01)]v

∗ = λ∗(ΓS11Γ + Ω11)v
∗. (A.7)

Note that (ΓS00Γ + Ω00)
−1 can be written as:

(ΓS00Γ + Ω00)
−1 = c(ΓS00Γ)−1 + Ω̃00 = cΓ−1S−100 Γ−1 + Ω̃00, (A.8)

where the equality (ΓS00Γ)−1 = Γ−1S−100 Γ−1 follows from the fact that Γ is diagonal,

c =
|ΓS00Γ|

|ΓS00Γ + Ω00|
, and Ω̃00 =

Adj[ΓS00Γ + Ω00]− Adj[ΓS00Γ]

|ΓS00Γ + Ω00|
(note that 0 < c ≤ 1).

Hence, plugging eq. (A.8) into eq. (A.7) and doing some algebra, we get:

[cΓS10S
−1
00 S01Γ + Ψ]v∗ = λ∗(ΓS11Γ + Ω11)v

∗, (A.9)

where, Ψ = (ΓS10ΓΩ̃00 + cΩ10Γ
−1S−100 Γ−1 + Ω10Ω̃00)(ΓS01Γ + Ω01), is Op(1).

Left multiplying eq. (A.9) by Γ−1 we obtain: [cS10S
−1
00 S01Γ + Γ−1Ψ]v∗ = λ∗(S11Γ +

Γ−1Ω11)v
∗. Now, let Ψ˜ = Γ−1ΨΓ−1, and Ω˜11 = Γ−1Ω11Γ

−1, to get:

[cS10S
−1
00 S01 + Ψ˜ ]Γv∗ = λ∗(S11 + Ω˜11)Γv

∗. (A.10)

Comparing eq. (A.10) with eq. (A.2), we can make three considerations:

(i) If Xa ≡ X1 and Xb ≡ X2, we get Ψ˜ = 0, Ω˜11 = 0, c = 1, and Γ = I, so we recover

zero mean, its covariance with ΓR1 is Op(1) and ΓR1e
′
1 is Op(T ). Similarly, the variance of e1 is Op(1) and

e1e
′
1 is Op(T ).
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the original problem. (ii) In the unlikely case that Ωij = 0, we also get Ψ˜ = 0 and c = 1, so

that the eigenvalue problem would be: [S10S
−1
00 S01Γ]v∗ = λ∗(S11Γ)v∗, the solution of which

is λ∗ = λ and v∗ = Γv. Hence, even in small samples, the cointegration test statistic would

be exactly the same as that for the pair (X1, X2). (iii) In the general case that Ωij 6= 0, we

will have Ψ˜ 6= 0, Ω˜11 6= 0, and c 6= 1. Note that the eigenvalues of the problem eq. (A.10) are

the solutions of the second-order polynomial in λ∗ |λ∗(S11 + Ω˜11)− (cS10S
−1
00 S01 + Ψ˜)| = 0.

Focus on the general case that Ωij 6= 0. As Johansen (1995) shows, the test statistic

−T
∑p

r+1 ln(1− λi) converges to a non-standard distribution that does not depend on S00.

Given that S11 is Op(T ) and the other matrices are Op(1), the asymptotic behavior of

λ and λ∗ is dominated by the same terms. To see this, let Θ = S10S
−1
00 S01, and Θ∗ =

cS10S
−1
00 S01+Ψ˜ . The original eigenvalues λ1 and λ2 (λ1 > λ2) are the roots of the polynomial:

λ2|S11|+ λ (s12θ21 + s21θ12 − s11θ22 − s22θ11)︸ ︷︷ ︸
B

+ (θ11θ22 − θ21θ12)︸ ︷︷ ︸
C

= 0, (A.11)

where sij and θij are the elements of the matrices S11 and Θ, respectively.

Since B < 0, λ2 =
−B −

√
B2 − 4|S11|C

2|S11|
=

G

2|S11|
.

If the series are cointegrated |S11| ∼ Op(T ), and since B ∼ Op(T ), the expression un-

der the square root is dominated by B2, meaning that (B2 − 4|S11|C) ' B2 . Thus G→ 0.

Now, replace θij by θ∗ij, and sij by s∗ij in eq. (A.11) to get B∗, C∗ and G∗. Since S∗11 =

S11 + Op(1), under cointegration, |S∗11| is still Op(T ). Additionally, since θij and θ∗ij are

Op(1), the asymptotic behavior of G∗ is the same as that of G, as the expression under the

square root is also dominated by B∗2, which is determined by the same sij’s as B. �

Appendix B FOR ONLINE PUBLICATION

ONLY: Proof of proposition 1

When nj, the size of the fully cointegrated subset, is fixed, the proof follows directly from

the proof of Theorem 1, so focus on the case of nj →∞.

Choose a pair from the nj series, say pair 0, and define Zi as the random variable that
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takes the value 1 if the test for the ith pair delivers the same cointegration rank as pair 0,

and takes the value 0 otherwise. The expected proportion of tests that deliver the same

cointegration rank as pair 0 is n∗jE(Zi)/n
∗
j , where n∗j is the number of pairs between the nj

series. From Theorem 1 E(Zi) = 1, thus, the mentioned expected proportion goes to 1 as

T goes to infinity. �

Appendix C FOR ONLINE PUBLICATION

ONLY: Proof and discussion of

proposition 2

Under Assumption 2, the true number of cointegration relationships between one series

inside and one outside a fully cointegrated subset is r = 0. Thus, for wrongly including a

series in n̂j we require that the cointegration tests for all of the pairs between that series

and every series in n̂j reject r = 0.

Let Xout be a series outside nj and let WRi be the event of wrongly rejecting r = 0

between Xout and the ith series in n̂j. Since for wrongly including Xout in n̂j, we need

to wrongly reject n̂j hypotheses, the probability of inclusion is P (WR1 ∩ ...WRn̂j
). This

probability can be factorized as:

P (WR1∩...WRn̂j
) = P (WR1|WR2, ...,WRn̂j

)×...× P (WRn̂j−1|WRn̂j
)×P (WRn̂j

), (C.1)

where P (WRi) is the nominal size of the pairwise tests (ϕ). Using the extreme assumption

that all of the n̂1 − 1 conditional probabilities in eq. (C.1) are equal to 1, the probability

of wrongly including Xout in n̂1 would be ϕ and, the expected number of wrong series in

n̂j would be (N − nj)ϕ. Thus, under this extreme assumption, the expected ratio of wrong

elements in the estimated nj over its true size would be:

E[W ] =
(N − nj)ϕ

nj
. (C.2)

Therefore, with fixed N , we may have N >> nj and the procedure will still work properly.
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For instance, with N − nj = 100 and ϕ = 0.01, we will have just one wrong series in n̂j.

If we consider N →∞, and ϕ is fixed, we would need nj to grow at the same rate as N

to avoid the proportion of wrong elements going to infinity. This implies a pervasiveness

requirement similar to that of DFM (see, e.g., Assumption B in Bai, 2003). There are two

possible ways to avoid imposing the pervasiveness assumption.

One way is to set ϕ as an inverse function of N . We could set ϕ = N−1/κ, with κ being

a fixed constant strictly larger than zero. In this way, nj must grow at a rate larger than

or equal to that of N1−1/κ, which is smaller than that of N . Note however that the use of

such a significance level may generate power issues for the pairs in which r = 1. For those

pairs, the test statistic for the null of r = 0 diverges at the rate of T , we need N1/κ to be

Op(T ). This is ensured by assumption 5. Since κ can be larger than one, this assumption

does not impose any restriction on the asymptotic behavior of the ratio T/N .

Note that in with κ < 1, we may have nj → 0 and our procedure will still work properly

in terms of gauge. This is possible because, by assumption 5, κ < 1 implies T/N →∞.

Another way to avoid the need of pervasiveness is to relax he extreme assumption that

all conditional probabilities in eq. (C.1) are equal to one. Once this is done we can use a

fixed ϕ and still have non-pervasive common trends. A detailed discussion about this issue

is available upon request.

Appendix D FOR ONLINE PUBLICATION

ONLY: Proof of proposition 3

In this appendix we show that the expected number false fully cointegrated subsets of

size λN(subsets of λN I(1) series in which there are none cointegrated pairs but pairwise

cointegration tests indicate that all pairs are cointegrated) tends to zero as T and N go to

∞.

The degree of dependence between the distributions of the cointegration tests statistics

for pairs of series in a set in which none of them cointegrates, is unknown. In what follows
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we consider the two extreme cases.

Independent distributions

In this case, the expected number of (wrongly) estimated fully cointegrated subsets com-

posed by Q series of the N −
∑

j nj ≡ n is

E[Qworng] = Cn
Qϕ

Q(Q−1)/2, (D.1)

where ϕ is the nominal size of the individual tests and Cn
K is the binomial coefficient. This

expectation is almost zero for, say, ϕ = 0.01, Q > 4 and moderately large n.

When n goes to infinity, letting Q = λn (with 0 < λ < 1), we show that E[Qworng] goes

to zero at a rate that depends on whether ϕ is fixed or not.

Using, log(Cn
Q) ≈ nlog(n) − (n − Q)log(n − Q) − Qlog(Q), and taking logs in eq. (D.1)

we get:

log(E[Qworng]) ≈ nlog(n)− (n−Q)log(n−Q)−Qlog(Q) +
Q(Q− 1)

2
log(ϕ) (D.2)

Using Q = λn and plugging into eq. (D.2):

log(E[Qworng]) ≈ nlog(n)− n(1− λ)log(n(1− λ))− λnlog(nλ)− λn(λn− 1)

2
log(ϕ)

Reordering:

log(E[Kworng]) ≈
λn(λn− 1)

2
log(ϕ)− n(1− λ)log(1− λ)− λnlog(λ) (D.3)

Thus E[Qworng] converges to zero. If ϕ is fixed, the rate of convergence is that of

ϕλn(λn−1)/2. If we use ϕ = n−1/κ, the rate of convergence is that of nλn(1−λn)/2κ.

Maximal dependence

In a set of Q series there are Q−1 independent pairs, meaning that the minimum number

of independent tests is Q−1. Thus, in the worst possible situation, the expected number of

(wrongly) estimated fully cointegrated subsets composed by Q series of the N −
∑

j nj ≡ n
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is E[Qworng] = Cn
Qϕ

(Q−1), where ϕ is the nominal size of the individual tests and Cn
Q is the

binomial coefficient.

Note that this is an extreme and very unlikely situation because it means that in a triplet

of not cointegrated I(1) series, finding cointegration in two of the three pairs implies that

cointegration will be found in the third pair with probability one. Simulation results in §IV

show that this is far from reality.

Still, if this were the case, E[Qworng] is acceptably small for, say, ϕ = 0.01, Q > 4 and

moderate n (for the these values and n < 106 the expectation is smaller than 1).

When n goes to infinity, letting ϕ = n−1/κ and Q = λn, and using the same reasoning as

in the case of independence, we get that E[Qworng] goes to zero at the rate of n(1−λn)/κ.

Implications

Previous results imply that choosing ϕ as an inverse function of n and disregarding small

fully cointegrated subsets (those with cardinality smaller than or equal to λn) constitutes a

strong protection against false discovery. In practice n is unknown but we can, safely, use

ϕ = N−1/κ and disregard subsets smaller than or equal to λN because N > n.

Appendix E FOR ONLINE PUBLICATION

ONLY: Proof of proposition 5

In this proof we use a slight modification of the arguments made in §II to study the gauge

of the pairwise procedure applied with Johansen’s tests.

For wrongly including a series in n̂j we require that the estimation of the cointegration

rank for all of the pairs between that series and every series in n̂j deliver r = 1.

Let Xout be a series outside nj and let WRi be the event of wrongly concluding r = 1

between Xout and the ith series in n̂j. Since for wrongly including Xout in n̂j, we need to n̂j

wrong rank conclusions, the probability of inclusion is P (WR1∩ ...WRn̂j
). This probability

can be factorized as:

P (WR1 ∩ ...WRn̂j
) = P (WR1|WR2, ...,WRn̂j

)× ...× P (WRn̂j−1|WRn̂j
)× ρ, (E.1)
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where ρ is the marginal probability of wrongly concluding r = 1. Using the extreme

assumption that all of the n̂1 − 1 conditional probabilities in eq. (E.1) are equal to 1, the

probability of wrongly including Xout in n̂1 would be ρ and, the expected number of wrong

series in n̂j would be (N − nj)ρ. Thus, under this extreme assumption, the expected ratio

of wrong elements in the estimated nj over its true size would be:

E[W ] =
(N − nj)ρ

nj
. (E.2)

By theorem 1 of Cavaliere et al. (2016) ρ → 0 as T → ∞, therefore, with fixed N , we

may have N >> nj and, not only the expected proportion, but also the expected number

of wrong inclusions will tend to zero.

Consider now the case of N → ∞. If the common trends are pervasive (nj grows at the

same rate as N), then, we still have the E[W ] going to zero.

In the case of non-pervasive trends (N/nj →∞), we need to impose a restriction on the

asymptotic behavior of N/nj as [T,N ]→∞.

From lemma 1 and theorem 1 of Cavaliere et al. (2016) ρ = P (AT > 0), where AT →∞

and AT/T → 0 (see Cavaliere et al. (2016) for the exact expression of AT ). In the case of the

Bayesian Information Criterion (BIC), AT diverges at the rate of log(T ), and in the case of

the Hannan and Quinn Information Criterion (HQC) it diverges at the rate of log(log(T )).

Thus, in the former case we need N/nj to be Op(log(T )) and in the latter Op(log(log(T ))).

These restrictions ensure E[W ] going to zero as [T,N ]→∞.

Appendix F FOR ONLINE PUBLICATION

ONLY: Extension to sets of se-

ries with one ‘general’ and sev-

eral ‘sectorial’ common trends

Throughout the paper we focused on the specific case that the data set at hand contains

several trends, among which some are common to reduced groups of series such that each of

39



those groups have only one common trend. As Espasa and Mayo-Burgos (2013) argue, this

is a sensible assumption when dealing with the components of a macro variable. In fact,

they show that the pairwise procedure leads to more accurate forecasts of different CPIs

than do other alternative methodologies, including DFM.

Nonetheless, when dealing with a large data set of macro variables (not necessarily the

components of a single one), the situation could be different. There seems to be agreement

in the literature that a general factor that affects more or less all variables plus sectorial

factors that affect specific subsets is a sensible assumption (see, e.g., Karadimitropoulou

and León-Ledesma (2013), Moench et al. (2013), and Breitung and Eickmeier (2015)).

If this is the situation, the pairwise procedure proposed in this paper will not be useful.

Since the only cointegrated pairs are those formed by series with a single common trend

(e.g., series that have only the general factor and no sectorial one), the procedure will be

unable to discover the ‘true’ data structure. Thus, we need to modify our approach for this

situation.

Provided that in the set of N series there is a subset of series that have just the general

trend, we can apply the following algorithm:

(i) Apply the pairwise procedure proposed in this paper. This will lead us to discover the

subset of series that have only the general trend — call it n1. (ii) Test for cointegration in

all of the possible triplets formed by one series inside n̂1 and a pair of outsiders. For the

triplets in which the outsiders have the same sectorial trend, we will find one cointegration

relationship (two common trends). (iii) Construct a (N−n̂1)×(N−n̂1) symmetric adjacency

matrix for the series outside n̂1 such that each cell of this matrix represents a pair of the

components outside n̂1. Each of those pairs belongs to n̂1 different triplets: one for each

element of n̂1. Then, in each cell of the adjacency matrix, put a 1 if all of the corresponding

n̂1 triplets have just one cointegration relationship; otherwise, put a 0. (iv) Look for maximal

fully connected sub-graphs in the previous adjacency matrix. This will lead us to discover

the series in each sector.

Remark 7 By Theorem 1, in point iii above, it would be asymptotically irrelevant if in

testing cointegration in a given triplet formed by a pair outside n̂1 and an element inside n̂1
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we do it (a) with all of the series in n̂1, (b) with some of them, or (c) with the estimated

common trend of n̂1. When dealing with small samples, requiring to find one cointegration

relationship in all of the n̂1 triplets that contain the same pair of series outside n̂1 and one

series of that subset (case a) may be too stringent. Instead, we could relax this requirement

by allowing a few of those triplets to fail in showing the existence of one cointegration

relationship. In a simulation experiment (available online), we consider three possibilities:

requiring a cointegration relationship in all of the n̂1 mentioned triplets; in all but one of

those triplets; and in all but two of them.

This procedure contributes to the literature in one relevant aspect: while the usual prac-

tice is to assume the sectorial structure as given, we can estimate it. Ando and Bai (2015)

estimate the sectorial structure but for stationary variables, with a size of sectors that goes

to infinity (in their simulation experiments the smallest sector has 100 units) and restricted

serial and cross-correlation of the error terms. The Global VAR models proposed by Pe-

saran et al. (2004) are also related to our proposal. Among other relevant differences, we

determine the ‘regions’ (sectors) statistically and do not have restrictions on the number of

variables per region, which can be large.

Simulation design

As argued above, the generalization for the case of general and sectorial trends requires

testing cointegration not only in pairs, but also in some triplets of series. Thus, the com-

putational cost somehow rises with respect to the pure pairwise approach. Assume a case

with N = 100 and n1 = 10 (now, n1 is the subset of series that have only the general

trend). Assume also that n̂1 = 10. After testing cointegration in all of the 4950 pairs, the

procedure requires making other 10 × 85(85 − 1)/2 = 35700 cointegration tests. However,

as highlighted in Remark 7, this issue could be strongly mitigated by testing cointegration

only with the estimated common trend of n̂1, so that the additional tests in the previous

example would be only 3570. We do not explore this possibility.

In this section, we consider two DGPs. The DGPs are DGP 1 and DGP 3 described in

§IV, modified to have general and sectorial trends. Call these modified DGPs as DGP 4 and

DGP 5, respectively. Thus, DGP 4 represents a process in which each variable in n1 or in
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some sector reacts only to one cointegration relationship, and idiosyncratic components are

independent. On the other hand, in DGP 5 variables in n1 or in some sector react to more

than one cointegration relationship, and there is idiosyncratic cross-correlation between all

of the N variables. The rest of this sub-section is devoted to describe the DGPs in more

detail.

Let si be the number of variables that, in addition to the general trend, also have the

trend of sector i. Using the same normalization for matrix β as in DGPs of previous section,

without loss of generality, we normalize all cointegration relationships with respect to one

of the variables in n1. To have a simple example of β′s structure, assume that N = 10,

n1 = 3, s1 = 3, s2 = 3, and that the remaining series has its own trend. In this case, we can

set β such that:

β′ =



β11 1 0 0 0 0 0 0 0 0

β21 0 1 0 0 0 0 0 0 0

β31 0 0 β34 1 0 0 0 0 0

β41 0 0 β44 0 1 0 0 0 0

β51 0 0 0 0 0 β57 1 0 0

β61 0 0 0 0 0 β67 0 1 0


(F.1)

An important difference with respect to §IV is that we cannot set the coefficients βij

equal to −1 because the series in n1 would be cointegrated with all of the other series in the

system. To avoid this, we need some variation in the coefficients βij. Thus, we take those

coefficients from the uniform distribution with parameters [−5,−0.1]. For DGP 4 (DGP 5),

matrix Φ1 is generated in the same way as in DGP 1 (DGP 3).

For DGP 4, matrix α has exactly the same structure as in DGP 1 (see eq. (4)), except

that the number of columns (r) is now n1 + s1 + s2 − 3. With this structure, the series

in first position of n1, s1 and s2 are weakly exogenous. The other series, react to a single

cointegration relationship that affects itself, the series in the first position of n1, and, for the

series that belong to some sector, the first series of the sector (see matrix β in eq. (F.1)).

In DGP 5, we set matrix α such that each variable j belonging to n1 or to some sector
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reacts to qj + 1 cointegration relationships and there are no weakly exogenous variables.

To get a visual example, assume that apart from the general common trend, there are two

sectorial ones. In this case, matrix α can be partitioned as follows:

α =



A1n1×(n1−1) 0 0

0 A2s1×(s1−1) 0

0 0 A3s2×(s2−1)

0 0 0(N−(n1+s1+s2))×(s2−1)


, (F.2)

where A1, A2 and A3 have the same structure as matrix α of DGP 3 (see eq. (6)).

We consider four scenarios and one sample size, T = 400. In the four scenarios, there is

a single general trend, two sectors, and some series with their own trends. In scenario 1 we

set N = 35, n1 = 10, s1 = 10, s2 = 10, and the remaining five series have their own trends.

In scenario 2 we add more noise; instead of only five series with their own trends, we have

30, thus, in this second scenario N = 60. In scenario 3 N = 80, n1 = 25, s1 = 25, s2 = 25,

and the remaining five series have their own trends. In scenario 4 N = 105, n1 = 25,

s1 = 25, s2 = 25, and the remaining 30 series have their own trends.

Note that in scenarios 2 and 4, not even the ‘general’ trend is clearly pervasive.

We use scenarios 1 and 2 both for DGP 4 and DGP 5. For saving computing time, we

simulate scenarios 3 and 4 only for DGP 5.

Results

Table F.1 includes the gauge and potency of the algorithm described above for discovering

the general and the sectorial trends. Figures under ‘Sectors’ columns are averages for the

two sectors. As the table shows, in general, the procedure has high potency for discovering

the true series in each sector with little cost in terms of gauge.

In DGP 4 (‘simple’ matrix α and diagonal Φ1), potency for n1 is close to 99% in both

scenarios, and gauge is 1%. For the sectors, when we require a cointegration relationship

in all of the triplets formed by a pair of series outside n̂1 and each of the insiders, potency

is somewhat lower, but still high (92%). When we allow some of those triplets to fail in

showing a cointegration relationship (see remark 7), potency figures of the sectors get close
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to those of n1. This improvement in potency is costless in terms of gauge.

In DGP 5 (‘complex’ matrix α and non-diagonal Φ1), potency for n1 is almost the same

as in DGP 4. Gauge is somewhat larger, but we still have acceptable low figures. Potency

results for the sectors show a relevant deterioration that is mitigated by allowing some

failures in the cointegration tests of the triplets. This improvement in potency is costless in

terms of gauge, which is somewhat larger than in DGP 4 but is still acceptably low. Note

that a gauge of 0.05 scenarios 1 and 2 implies an average of 0.5 wrong series in the estimated

subsets. For scenarios 3 and 4 the same gauge implies an average of 1.25 wrong series.

TABLE F.1:
Gauge and potency of the ‘pairwise’ procedure for the case of general and sectorial trends
(nominal size ϕ = 0.01, T = 400)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

n1 Sectors n1 Sectors n1 Sectors n1 Sectors

DGP 4: All
Potency 0.98 0.92 0.99 0.92 — — — —

Gauge 0.01 0.02 0.01 0.01 — — — —

DGP 4: All but one
Potency 0.98 0.95 0.99 0.96 — — — —

Gauge 0.01 0.01 0.01 0.01 — — — —

DGP 4: All but 2
Potency 0.98 0.95 0.99 0.96 — — — —

Gauge 0.01 0.01 0.01 0.01 — — — —

DGP 5: All
Potency 0.97 0.82 0.96 0.73 0.96 0.68 0.96 0.60

Gauge 0.05 0.03 0.03 0.03 0.04 0.01 0.04 0.01

DGP 5: All but one
Potency 0.97 0.88 0.96 0.84 0.96 0.82 0.96 0.76

Gauge 0.05 0.03 0.03 0.02 0.04 0.01 0.04 0.01

DGP 5: All but two
Potency 0.97 0.89 0.96 0.86 0.96 0.87 0.96 0.83

Gauge 0.05 0.03 0.03 0.02 0.04 0.01 0.04 0.01

- Gauge = 100
(N−n1)Nexp

∑Nexp
i=1 Z2,i. - Pot = 100

n1Nexp

∑Nexp
i=1 Z1,i. - Z2 = number of wrong series

included in n̂1. - Z1 = number of correct series included in n̂1. - Nexp = number of experiments
(500). - n1 is the group of series that have the general trend only. - Scenario 1: N = 35, n1 = 10,
s1 = s2 = 10. - Scenario 2: N = 60, n1 = 10, s1 = s2 = 10. - Scenario 3: N = 80, n1 = 25,
s1 = s2 = 25. - Scenario 4: N = 105, n1 = 25, s1 = s2 = 25. - Figures in ‘Sectors’ columns are
averages for the two sectors. - All but one and All but two rows indicate that we are allowing one
or two triplets to fail in showing a cointegration relationship (see remark 7).
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Appendix G FOR ONLINE PUBLICATION

ONLY: False discovery in Monte

Carlo experiments

In this appendix we present the figures of false discovery corresponding to the Monte

Carlo experiments of §IV. For each experiment, DGP, scenario and sample size we count the

number fully cointegrated subsets in excess of the true number, which is always one. We

denote the number of additional subsets as Num ex.Subsets. For each of these additional

subsets we count the number of series which are not fully cointegrated (Num Sers). Note

that when the first fully cointegrated subset does not include all the correct series, the

additional subsets may include some fully cointegrated series.

Table G.1 include the average across experiments of Num ex.Subsets and Num Sers. As

the table shows, false discovery is not a relevant issue for T = 200 and T = 400 in any

case. With T = 100 it could be problematic, particularly in DGPs 2 and 3. Given that the

number of wrong series is always less than 6, disregarding subsets with less than 6 series

will solve the problem for this sample size.
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TABLE G.1:
False Discovery in DGPs with Gaussian innovations

n1 = 10 n1 = 25 n1 = 40

Num. ex.Subsets × Num. Sers Num. ex.Subsets × Num Sers Num. ex.Subsets × Num. Sers
DGP 1 - Johansen

T=100 0.12 x 4.3 0.56 x 1.3 1.15 x 0.5
T=200 0.05 x 4.9 0.05 x 3.4 0.06 x 1.5
T=400 0.03 x 4.9 0.03 x 3.6 0.02 x 1.9

DGP 1 - BIC
T=100 0.13 x 5.1 0.27 x 4 0.71 x 3.1
T=200 0.002 x 5 — —
T=400 — — —

DGP 2 (non-diagonal Φ) - Johansen
T=100 1.64 x 5.2 1.95 x 3.6 2.07 x 2.1
T=200 0.04 x 5 0.12 x 2 0.51 x 0.4
T=400 0.03 x 5.1 0.04 x 3.3 0.06 x 1.9

DGP 2 (non-diagonal Φ) - BIC
T=100 1.08 x 5.3 0.85 x 4.4 2.17 x 1.3
T=200 0.01 x 5.3 0.01 x 4.8 0.05 x 0.6
T=400 — — —

DGP 3 (non-diagonal Φ and complex long-run structure) - Johansen
T=100 2.45 x 5.1 2.74 x 3.8 2.97 x 2.9
T=200 0.07 x 4.4 0.14 x 1.5 0.53 x 0.3
T=400 — — —

DGP 3 (non-diagonal Φ and complex long-run structure) - BIC
T=100 1.46 x 5.4 1.22 x 4.9 2.81 x 2.1
T=200 0.01 x 5 0.02 x 3.1 0.08 x 0.8
T=400 — 0.002 x 5 —
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